ПАПIBIA UПIVERSITY
 OF SCIEПCE AПD TECHПOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BAMS	LEVEL: 6
COURSE CODE: LIA601S	COURSE NAME: LINEAR ALGEBRA 2
SESSION: \quad JULY 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr S.N. NEOSSI NGUETCHUE AND Pr A. KAMUPINGENE
MODERATOR:	Mr B. OBABUEKI

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations. All numerical results must be given using 5 decimals where necessary unless mentioned otherwise.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Attachments

None

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator defined by

$$
T(x, y, z)=(2 x+3 y, 4 x-5 y, x+z)
$$

Find the matrix representation of T relative to the basis
$e=\left\{v_{1}, v_{2}, v_{3}\right\}=\{(1,0,1),(0,3,0),(0,0,2)\}$.

QUESTION 2 [23 Marks]

Define the linear transformation $T: \mathbb{P}_{2}(\mathbb{R}) \rightarrow \mathbb{P}_{2}(\mathbb{R})$ by

$$
T\left(a x^{2}+b x+c\right)=a x^{2}+(a+b) x+(a+b+c)
$$

2.1. Determine whether $p(x)=x^{2}+2 x+3$ is in the range of T.
2.2. Find a basis for the range of T.
2.3. Find a basis for the kernel of T.
2.4. Verify that the Rank Theorem holds.

QUESTION 3 [50 Marks]
Let $A=\left(\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right)$.
3.1. Find the minimal polynomial of A.
3.2. Explain why A is diagonalizable or not diagonalizable. Give the full details of each statement made.
3.3. Find a Jordan canonical form J of A.
3.4. Find a matrix Q such that $Q^{-1} A Q=J$.

QUESTION 4 [14 Marks]

Let A be a square matrix with minimal polynomial

$$
m(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0} .
$$

4.1. Show that A is invertible if and only if $a_{0} \neq 0$.
4.2. Prove that if A is invertible, then

$$
A^{-1}=-\frac{1}{a_{0}}\left(A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{1} I_{n}\right) .
$$

